All official European Union website addresses are in the europa.eu domain.
See all EU institutions and bodiesDo something for our planet, print this page only if needed. Even a small action can make an enormous difference when millions of people do it!
4. THE NEED FOR DIFFERENT TYPES OF MONITORING STATION
The ETC/IW was asked to assess the need for different types of monitoring station to be included within the network. Such stations would provide different types of information for use by the Agency to meet the requirements described in Section 3. Such a structured or tiered monitoring network would also imply that there might be a need for different sample site densities, sampling frequencies and determinands for measurement.
The EEAs need for different types of stations for fresh surface water and groundwater, quality and quantity monitoring is summarised in the following sections and is based on more detailed submissions by members of the ETC/IW The source documents are reproduced in the Project Record for 1994 (ETC 1995).
4.1 Surface water quality
There is a very wide range of terminology used to describe and define different types of monitoring stations, many related to the type of information provided. For example, in Europe and North America the following types of station are described:
There are also examples of aggregating or summarising data from a number of stations to characterise relatively large areas or river catchments. These stations have been termed virtual stations (Santos and Costa 1991).
It would appear that in the context of the EEA network that three types of monitoring station are relevant:
Ideally there would be reference stations for each eco-hydrological zone in a country, though in some countries reference conditions will probably not exist. For instance Portugal should have at least four, characterising the arid Mediterranean area south of the Tagus, the Atlantic basins of the north, the coastal basins and the interior forest areas. There should be flux stations on all major rivers crossing borders among Member States, and on each major river just before discharging into estuaries or coastal waters.
Possible ways of aggregating data from a number of representative stations to give broader overviews of quality on a catchment or regional basis will be investigated further during the implementation of the network in 1996 and subsequent years. It will be important to assess whether aggregating stations loses important information and to determine what would be the optimum scale of such aggregation.
4.2 Surface water quantity
Europe has a dense network of flow measurement stations: approximately 19,000 at an average density of 1 per 270 km2 (WMO, 1987). This is justifiable owing to Europe's wide physical diversity with respect to climate, morphometry and geology and the anthropogenic factors of population density, land and water use. This diversity is reflected in the varieties of river regimes which present a wide range of challenges for flow measurement and hydrometric data acquisition, so much so that estimates of runoff and thence resources may be significantly compromised.
There is growing recognition of the need to measure and monitor river mass fluxes systematically to assist with the rational management of the environment at all spatial scales, from individual river reaches and basins (e.g. UK National Rivers Authority Catchment Management Plans) and semi-enclosed seas bordered by several countries (e.g. the North Sea Conference), through to the world's coastal zones and oceans. This recognition has resulted in significant research initiatives on flux assessment in a number of countries.
There is also a need to monitor in respect of eu legislation and international obligations and conventions. There is only one piece of EU legislation requiring measurement of water quantity relative to surface freshwater, the Exchange of Information Decision (77/795/EEC) and there are nine European international conventions which require flow measurement.
For inland water quantity monitoring, two broad categories of station may be recognised in philosophical terms; in practice, there may be considerable overlap between the categories at individual measurement sites:
The separation is between that which has to be done to ensure legal compliance or efficient utilisation of the water resource and that which is beneficial in allowing the longer or broader view to inform policy making, assist planning decisions and increase the knowledge base.
Surveillance monitoring may be further subdivided into:
The EEA requires access to information from a sound surveillance network that would capitalise on existing networks as far as is prudent and establish new sites where justified. The network design should be driven by the need for information to address the legitimate interests of the EEA. These interests extend beyond the monitoring and characterising of the state of the environment (the classical surveillance justification), investigating pressures and assessing remedies, into reviewing selected scenarios related to development strategies. In turn, this requires that the network is capable of quantifying effects and providing insights to processes sufficient to frame scientifically based management or mitigation procedures. This may not coincide with the classical methodology of the theoretical sampling of representative subsets of the geographical, climatic and aquatic environments (WMO 1976, 1982) but would be a pragmatic response to the difficulties in maintaining networks with too narrow a user base. The networks related to water quantity measurement, notwithstanding their historical development, are probably closer to a representative ideal than those related to water quality and ecology measures. Attempts to harmonise the location of water quantity and quality sampling sites are likely to demand an extension or relocation of the flow-gauging network (as flow measurement sites are likely to be less critical in their siting).
Example topics for which information on water quantity and mass loads would be obligatory or desirable include:
It is concluded from this review that:
4.3 Groundwater quality
4.3.1 Background
The purposes and objectives of groundwater quality monitoring include:
4.3.2 Types of monitoring network
The following types of monitoring network can be distinguished:
Basic networks
The basic network should deliver general information about the quality of the groundwater. The network should cover the entire country, and the monitoring programme should have a permanent character over long time. Stations yielding background information of the natural quality of the groundwater can be a part of the basic network. To be consistent with the surface water quality stations these could be termed reference stations. The information from this network forms the basis of the evaluation of the quality trends in the future and is the basis for both countrywide and local hydrogeological scientific and practical investigations. The design of the basic network can follow different concepts of which the following should be considered.
Reference stations providing background information should be established outside areas affected by direct human activities such as groundwater pumping and other anthropogenic changes. In some areas within the Eea (small countries or in densely populated areas) this will not be possible.
Specific networks
Specific networks are constructed for monitoring selected areas or for specific kinds of pollution, for example, point sources. Therefore, they act as impact stations. The stations can form a separate network, or they can be an extension of the basic network, and thereby fulfil the need for data in areas between points on the larger basic network. The specific network can have a permanent character, or will be in operation as long as there are needs for information at that specific place. Around landfills, this could be during the period of activity and for a period after the landfill has been closed. These kinds of networks are regional or local and are often the most important.
Temporary networks
The temporary network stations are established to collect data in connection with particular groundwater projects, and will normally be impact stations. The network will be operational during the project period after which it is closed. Eventually, some stations may be transferred to the basic or specific network. The network will often be very dense and the quality data are included into transport and process studies of an area, often contributing to the verifications of the project findings.
4.3.3 Conclusions
It is concluded that the EEA will need information from reference, representative and possibly impact monitoring stations initially selected form existing national monitoring networks. Information will also have to be obtained from important flux points (stations), for example, between media (surface and groundwater, groundwater and sea) and between countries.
4.4 Groundwater quantity
There was close liaison and co-operation between the two groups undertaking the groundwater quality and quantity assessments, and as a result the main conclusions arising were similar which is not surprising as quite often both would be monitored at the same time for the same purposes.
Groundwater quantity measurement has proven to be indispensable to monitor the anthropogenic induced and/or natural changes in water levels in order to:
A feasible procedure to be followed when planning a network is to consider the multiple purposes and needs the network has to serve. In this manner the following types of networks can be distinguished:
Descriptions of basic, specific and temporary networks have been given in the previous section. An additional type of network and station has been identified for groundwater quantity monitoring, the hydrological benchmark or baseline station. These provide a continuing series of consistent observations on hydrological and related climatological variables. They should reflect local, regional and geographic differences.
The type of the observed variables also varies with the purpose of the network, the necessary information and the particular characteristics of the groundwater and its regime in the area. As to spatial and temporal densities of the observations, these usually increase with the transition from the national or regional level to the project-specific sites and/or to the level of local warning requirements. The type of field record (e.g. autographic, telemetered, manual) is highly dependent on the available technology of data transmission and processing. Finally, the length of record depends on the duration or the purpose of the network.
Both the specific network and temporary hydrogeological network may be considered as "impact stations" since they monitor the influences of projects and water management systems on groundwater more on a local scale. They should be established in areas that are relatively uninfluenced by past or future anthropogenic changes. Since long records are the essence of a benchmark station, consideration should be given to existing stations if they meet the other requirements. Climatological benchmark stations are known as reference stations.
Monitoring and assessment of groundwater quantity is generally indispensable, but of particular importance in areas with quantity and/or quality problems. Detailed information about the situation and trend in water tables on a regional and local level are vital for a special tailored use and need oriented groundwater management. Lacking the necessary detailed information, a system of authorisations - as proposed by the groundwater action programme (EC 1995) - depending on permits and general rules may not be effective and may not meet the expectations put into such a system.
The different types and names of stations (e.g. benchmark stations, impact stations etc.) for monitoring groundwater quantity are mainly a result of the specific objectives the network has to serve. The type of stations with respect to the type of network (e.g. base-line etc.) has usually no influence on the design and the construction of the observation station as long as the observation of groundwater tables is concerned.
No current EU directive has specific requirements for groundwater quantity monitoring. Nevertheless the need for, and the importance of, monitoring groundwater quantity has been recognised at an European level especially when facing water shortages and quantity problems in large parts of the European Union over the last years. The need for such groundwater monitoring is stressed by the European Commission in its Groundwater Action Programme (EC 1995).
For the reasons mentioned the choice of the appropriate type(s) of groundwater quantity monitoring networks as well as the appropriate level of monitoring effort (density of stations, frequency of observations) are closely linked to the very needs the network has to serve. The economic and environmental benefits of appropriate and sustainable groundwater quantity management in regions with an excessive over-exploitation of limited groundwater resources may justify the costs of a dense network of stations including impact stations on a national, regional and local level. The same network and number of stations in regions with abundant groundwater resources and no quantity problems may be considered as pure luxury, as a much more limited and less dense network might serve the special purposes of water management in those regions.
A Europe wide comparison of results of groundwater quantity monitoring should mainly be based on the aggregated results (e.g. area, number of monitoring stations, monthly and annual changes in groundwater tables) of the basic or principal network, as all other networks (with "impact stations") take into account very specific local effects, which may be not fully comparable throughout Europe.
For references, please go to https://eea.europa.eu./publications/92-9167-023-5/page007.html or scan the QR code.
PDF generated on 23 Nov 2024, 01:20 PM
Engineered by: EEA Web Team
Software updated on 26 September 2023 08:13 from version 23.8.18
Software version: EEA Plone KGS 23.9.14
Document Actions
Share with others