All official European Union website addresses are in the europa.eu domain.
See all EU institutions and bodiesDo something for our planet, print this page only if needed. Even a small action can make an enormous difference when millions of people do it!
Indicator Assessment
In the EEA-33 region, emissions of polycyclic aromatic hydrocarbons (PAHs) decreased by 77 % between 1990 and 2017 (Figure 1). A combination of targeted legislation, details of which are set out in the 'Indicator specification — policy context' section, coupled with improved controls and abatement techniques, has led, in general, to significant progress being made in most countries to reduce PAH emissions (Figure 3).
Although the majority of individual countries report that PAH emissions have decreased since 1990, five countries (Bulgaria, Denmark, Finland, Malta and Romania) have reported an increase in PAH emissions. One cause of these increased emissions is the introduction of policy measures that have encouraged the burning of renewable materials (e.g. wood by Danish households). Wood burning produces emissions of PAHs and hence, in this instance, policies that have been implemented to address one environmental issue (climate change) have had unintended consequences on another (air pollution). In absolute terms, the emissions of PAHs from these countries are relatively low compared with other countries, but the effect on local populations and environmental quality may, nevertheless, be notable. Of the EEA-33 countries, Portugal and Germany reported the highest PAH emissions.
Emissions of hexachlorobenzene (HCB) have fallen sharply in the EEA-33 since 1990, mostly because of a decrease of 4.3 tonnes in HCB emissions in the United Kingdom between 1998 and 1999, which accounts for 98 % of the decrease in EEA-33 emissions since 1999 (Figure 2). This was due to the introduction of regulations in the United Kingdom to control the use of hexachloroethane (HCE) tablets as a degassing agent in secondary aluminium production.
Emissions of polychlorinated biphenyls (PCBs) in the EEA-33 decreased by 83 % between 1990 and 2017, mainly because of reductions in 'Industrial processes and product use' emissions, which accounted for 87 % of the decrease over this period (Figure 3). Within the EEA-33 region, four countries (Cyprus, the Netherlands, Spain and Sweden) reported emissions of PCBs in 2017 that were higher than emissions in 1990; Greece, Iceland and Malta reported a 'questionable' increase in PCB emissions (Figure 2). In 2017, 23 countries reported lower emissions than in 1990 and the remaining three countries either did not report data or reported zero emissions for 1990.
The reported emissions of dioxins and furans in the EEA-33 countries decreased by about 70 % between 1990 and 2017. Of the 32 countries that reported non-zero emissions, only Greece, Liechtenstein and Romania reported an increase in emissions between 1990 and 2017 (Figure 2). In 2017, 32 % of dioxin and furan emissions were from sources in the 'Waste' sector, 25 % were from the 'Commercial, institutional and households' sector and 22 % were from the 'Energy production and distribution' sector (Figure 3).
Important sources of emissions of persistent organic pollutants (POPs) typically include residential combustion processes (open fires, coal and wood burning for heating purposes, etc.), industrial metal production processes and the road transport sector.
Commercial, institutional and households: Current emissions from ‘Commercial, institutional and households’ sources account for about 45 % of total PAH emissions and a quarter of the total dioxin and furan emissions in the EEA-33. Emissions from households have declined since 1990 as a result of a decrease in the residential use of coal.
Industrial processes and product use: While industrial processes and product use sources account for more than two thirds of PCB emissions in the EEA-33, emissions from this sector have decreased by around 83 % since 1990. Reductions in POP emissions in the 'Industrial processes and product use' sector result from improvements in abatement technologies for metal refining and smelting.
Road transport: Road transport emissions do not make particularly large contributions to total POP emissions in the EEA-33.
The units used in this indicator are the tonne (metric ton).
Targeted European Commission legislation (directives and regulations), coupled with improved control and abatement techniques, have led to good progress being made by the EEA-33 countries towards reducing air emissions of POPs, including the PAH group of chemicals. Such legislation is described below.
In May 2009, additional chemicals were added to the Stockholm Convention:
The EC Communication on a Community Strategy for Dioxins, Furans and PCBs (COM (2001) 593 final) aims to assess the current state of the environment and to reduce human exposure and long-term environmental effects. This communication does not propose legislative measures, but could be the basis for a Community action plan.
The Directive on the Limitation of Emissions of Certain Pollutants into the Air from Large Combustion Plants (2001/80/EC) has had the effect of reducing heavy metal and PAH emissions via dust control and absorption.
Regulation (EC) No 850/2004 on Persistent Organic Pollutants entered into force on 20 May 2004. The main purpose of this regulation is to enable the European Community to ratify the Stockholm Convention and the Aarhus Protocol. The regulation also deals with stockpiles of redundant substances.
Emissions of a number of heavy metals released from certain industrial facilities are also estimated and reported under the requirements of the European Pollutant Release and Transfer Register Regulation (E-PRTR) (166/2006/EC).
The EU Directive on Ambient Air Quality and Cleaner Air for Europe (2008/50/EC) and Directive 2004/107/EC relating to heavy metals and polycyclic aromatic hydrocarbons in ambient air contain provisions, and target and limit values for the further control of air pollutants in ambient air.
There are also a number of specific EU environmental quality and emission standards for heavy metals and POPs in coastal and inland waters, drinking waters, etc. These have only indirect relevance to air emissions as they do not directly specify emission or precipitation quality requirements, but rather specify the required quality of receiving waters. Such measures include Directive 84/491/EEC on HCH discharges; Directives 76/464/EC and 86/280/EC on dangerous substances; and the Water Framework Directive (2000/60/EC).
As noted above, the Aarhus Protocol on POPs to the UNECE LRTAP Convention obliges parties to reduce their emissions of dioxins, furans, PAHs and HCB to below their 1990 levels (or an alternative year between 1985 and 1995 inclusive).
This indicator is based on the national total and sectoral emissions officially reported to the EEA and UNECE/EMEP (United Nations Economic Commission for Europe/Co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe) LRTAP Convention. For the EU-28 Member States, the data used are consistent with the emissions data reported by the EU in its annual submission to the LRTAP Convention.
Recommended methodologies for emission inventory estimation are compiled in the EMEP/EEA Air Pollutant Emission Inventory Guidebook (EMEP/EEA, 2016). Base data are available from the EEA Data Service and the EMEP web site. If necessary, gaps in reported data are filled by the European Topic Centre for Air and Climate Change using simple interpolation techniques (see below). The final gap-filled data used in this indicator are available from the EEA Data Service .
Base data, reported in the UNECE/EMEP nomenclature for reporting (NFR14) sector format, are aggregated into the following EEA sector codes to obtain a consistent reporting format across all countries and pollutants:
The following table shows the conversion of NFR sector codes used for reporting by countries into EEA sector codes:
|
|
An improved gap-filling methodology was implemented in 2010 that enables a complete time-series trend for the main air pollutants (nitrogen oxides (NOx), sulphur oxides (SOx), non-methane volatile organic compounds (NMVOCs), ammonia (NH3) and carbon monoxide (CO)) to be compiled. In cases in which countries did not report emissions for any year, it meant that gap filling could not be applied. For these pollutants, therefore, the aggregated data are not yet complete and are likely to underestimate true emissions. Further methodological details of the gap-filling procedure are provided in section 'Data gaps and gap-filling' of the European Union emission inventory report 1990–2017 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP).
The use of gap filling for countries that have not reported emissions for one of more years can potentially lead to artificial trends, but it is considered unavoidable if a comprehensive and comparable set of emission data for European countries is required for policy analysis purposes.
Uncertainties in the emission estimates of PAHs reported by countries are considered to be higher than for other more 'traditional' air pollutants, such as NOx and SO2, because of the relatively high uncertainties that exist with regard to both activity data and emission factors for this group of pollutants. Emission estimates for the other POPs are also considered to have a high degree of uncertainty.
This indicator is regularly updated by the EEA and is used in state of the environment assessments. The uncertainties related to methodology and data sets are therefore important. Any uncertainties involved in the calculation and the data sets must be accurately communicated in the assessment, in order to prevent erroneous messages from influencing policy actions or processes.
For references, please go to https://eea.europa.eu./data-and-maps/indicators/eea32-persistent-organic-pollutant-pop-emissions-1/assessment-10 or scan the QR code.
PDF generated on 23 Nov 2024, 12:12 AM
Engineered by: EEA Web Team
Software updated on 26 September 2023 08:13 from version 23.8.18
Software version: EEA Plone KGS 23.9.14
Document Actions
Share with others